Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.313
1.
Sci Rep ; 14(1): 9820, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684767

In critically ill patients, overweight and obesity are associated with acute respiratory distress syndrome and acute kidney injury (AKI). However, the effect of obesity on ischemia-reperfusion injury (IRI)-induced AKI is unknown. We hypothesized that obesity would aggravate renal IRI in mice. We fed mice a standard or high-fat diet for eight weeks. The mice were divided into four groups and submitted to sham surgery or IRI: obese, normal, normal + IRI, obese, and obese + IRI. All studies were performed 48 h after the procedures. Serum glucose, cholesterol, and creatinine clearance did not differ among the groups. Survival and urinary osmolality were lower in the obese + IRI group than in the normal + IRI group, whereas urinary neutrophil gelatinase-associated lipocalin levels, tubular injury scores, and caspase 3 expression were higher. Proliferating cell nuclear antigen expression was highest in the obese + IRI group, as were the levels of oxidative stress (urinary levels of thiobarbituric acid-reactive substances and renal heme oxygenase-1 protein expression), whereas renal Klotho protein expression was lowest in that group. Expression of glutathione peroxidase 4 and peroxiredoxin 6, proteins that induce lipid peroxidation, a hallmark of ferroptosis, was lower in the obese + IRI group. Notably, among the mice not induced to AKI, macrophage infiltration was greater in the obese group. In conclusion, greater oxidative stress and ferroptosis might aggravate IRI in obese individuals, and Klotho could be a therapeutic target in those with AKI.


Acute Kidney Injury , Obesity , Oxidative Stress , Reperfusion Injury , Animals , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Obesity/complications , Obesity/metabolism , Mice , Male , Diet, High-Fat/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Glucuronidase/metabolism , Kidney/metabolism , Kidney/pathology
2.
Cell Cycle ; 23(3): 248-261, 2024 Feb.
Article En | MEDLINE | ID: mdl-38526145

Hyaluronidases (HAases) are enzymes that degrade hyaluronic acid (HA) in the animal kingdom. The HAases-HA system is crucial for HA homeostasis and plays a significant role in biological processes and extracellular matrix (ECM)-related pathophysiological conditions. This study aims to explore the role of inhibiting the HAases-HA system in acute kidney injury (AKI). We selected the potent inhibitor "sHA2.75" to inhibit HAase activity through mixed inhibitory mechanisms. The ischemia-reperfusion mouse model was established using male BALB/c mice (7-9 weeks old), and animals were subjected to subcapsular injection with 50 mg/kg sHA2.75 twice a week to evaluate the effects of sHA2.75 on AKI on day 1, 5 and 14 after ischemia-reperfusion or sham procedure. Blood and tissue samples were collected for immunohistochemistry, biochemical, and quantitative analyses. sHA2.75 significantly reduced blood urea nitrogen (BUN) and serum creatinine levels in AKI mouse models. Expression of kidney injury-related genes such as Kidney injury molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), endothelial nitric oxide synthase (eNOS), type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA) showed significant downregulation in mouse kidney tissues after sHA2.75 treatment. Moreover, sHA2.75 treatment led to decreased plasma levels of Interleukin-6 (IL-6) proteins and reduced mRNA levels in renal tissues of AKI mice. Inhibitor sHA2.75 administration in the AKI mouse model downregulated kidney injury-related biomarkers and immune-specific genes, thereby alleviating AKI in vivo. These findings suggest the potential use of HAase inhibitors for treating ischemic reperfusion-induced kidney injury.


Acute Kidney Injury , Hyaluronoglucosaminidase , Mice, Inbred BALB C , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Male , Hyaluronoglucosaminidase/antagonists & inhibitors , Mice , Disease Models, Animal , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Blood Urea Nitrogen , Hyaluronic Acid , Creatinine/blood , Lipocalin-2/metabolism
3.
Medicina (Kaunas) ; 60(3)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38541075

Background and Objectives: Therapeutic hypothermia (TH) shows promise as an approach with neuroprotective effects, capable of reducing secondary brain damage and intracranial pressure following successful mechanical thrombectomy in the acute phase. However, its effect on cognitive impairment remains unclear. This study investigated whether TH can improve cognitive impairment in a mouse model of transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R). Materials and Methods: Nine-week-old C57BL/6N mice (male) were randomly assigned to three groups: sham, tMCAO/R, and tMCAO/R with TH. Cognitive function was assessed 1 month after model induction using the Y-maze test, and regional cerebral glucose metabolism was measured through positron emission tomography with fluorine-18 fluorodeoxyglucose. Results: tMCAO/R induced cognitive impairment, which showed improvement with TH. The TH group exhibited a significant recovery in cerebral glucose metabolism in the thalamus compared to the tMCAO/R group. Conclusions: These findings indicate that TH may hold promise as a therapeutic strategy for alleviating ischemia/reperfusion-induced cognitive impairment.


Cognitive Dysfunction , Hypothermia, Induced , Neuroprotective Agents , Reperfusion Injury , Mice , Animals , Male , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion Injury/complications , Cognitive Dysfunction/therapy , Cognitive Dysfunction/complications , Glucose
4.
Mediators Inflamm ; 2024: 7459054, 2024.
Article En | MEDLINE | ID: mdl-38549714

Background: Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods: Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results: After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion: Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.


Abietanes , Brain Injuries, Traumatic , Brain Ischemia , Ischemic Stroke , MicroRNAs , Reperfusion Injury , Humans , Rats , Animals , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , MicroRNAs/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/complications , Oxygen/metabolism , Reperfusion/adverse effects , Glucose/metabolism , Water , Apoptosis
5.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Article En | MEDLINE | ID: mdl-38529522

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Male , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Rats, Wistar , Kidney/pathology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Inflammation/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/complications , Fibrosis
6.
Biochem Biophys Res Commun ; 709: 149709, 2024 May 21.
Article En | MEDLINE | ID: mdl-38554603

Ischemia-reperfusion (I/R) leads to tissue damage in transplanted kidneys, resulting in acute kidney injury (AKI) and chronic graft dysfunction, which critically compromises transplant outcomes, such as graft loss. Linaclotide, a guanylate cyclase C agonist clinically approved as a laxative, has recently been identified to exhibit renoprotective effects in a chronic kidney disease (CKD) model. This study evaluates the therapeutic effects of linaclotide on AKI triggered by I/R in a rat model with an initial comparison with other laxatives. Here, we show that linaclotide administration resulted in substantial reduction in serum creatinine levels, reflective of enhanced renal function. Histological examination revealed diminished tubular damage, and Sirius Red staining confirmed less collagen deposition, collectively indicating preserved structural integrity and mitigation of fibrosis. Further analysis demonstrated lowered expression of TGF-ß and associated fibrotic markers, α-SMA, MMP2, and TIMP1, implicating the downregulation of the fibrogenic TGF-ß pathway by linaclotide. Furthermore, one day after I/R insult, linaclotide profoundly diminished macrophage infiltration and suppressed critical pro-inflammatory cytokines such as TNF, IL-1ß, and IL-6, signifying its potential to disrupt initial inflammatory mechanisms integral to AKI pathology. These findings suggest that linaclotide, with its established safety profile, could extend its benefits beyond gastrointestinal issues and potentially serve as a therapeutic intervention for organ transplantation. Additionally, it could provide immediate and practical insights into selecting laxatives for managing patients with AKI or CKD, regardless of the cause, and for those receiving dialysis or transplant therapy.


Acute Kidney Injury , Peptides , Renal Insufficiency, Chronic , Reperfusion Injury , Humans , Rats , Animals , Laxatives/metabolism , Laxatives/pharmacology , Laxatives/therapeutic use , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Kidney/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Renal Insufficiency, Chronic/pathology , Ischemia/pathology , Reperfusion , Transforming Growth Factor beta/metabolism , Fibrosis
7.
Eur J Pharmacol ; 970: 176507, 2024 May 05.
Article En | MEDLINE | ID: mdl-38492877

BACKGROUND AND AIMS: Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS: Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS: Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS: Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.


Acute Kidney Injury , Reperfusion Injury , Rats , Animals , Tumor Necrosis Factor-alpha/pharmacology , Etanercept/pharmacology , Kidney , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Ischemia/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control
8.
JCI Insight ; 9(6)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38516890

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , Humans , Male , Rats , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Glucose , Rats, Wistar , Renal Insufficiency, Chronic/drug therapy , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use
9.
CNS Neurosci Ther ; 30(2): e14610, 2024 02.
Article En | MEDLINE | ID: mdl-38334013

AIMS: Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication. METHODS: C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized. RESULTS: The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus. CONCLUSION: These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.


Cognitive Dysfunction , Gastrointestinal Microbiome , Reperfusion Injury , Animals , Mice , Acetates/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Dysbiosis/complications , Liver/metabolism , Mice, Inbred C57BL , Reperfusion Injury/complications , Reperfusion Injury/metabolism
10.
Ann Nucl Med ; 38(5): 337-349, 2024 May.
Article En | MEDLINE | ID: mdl-38360964

BACKGROUND: Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS: We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS: We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION: Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.


Brain Ischemia , Cyclosporine , Reperfusion Injury , Rats , Animals , Neutrophil Infiltration , Edaravone/pharmacology , Edaravone/therapeutic use , Fluorodeoxyglucose F18 , Neuroinflammatory Diseases , Gallium Radioisotopes/therapeutic use , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Brain Ischemia/complications , Positron-Emission Tomography , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/drug therapy , Reperfusion Injury/complications
11.
Eur J Pharmacol ; 967: 176391, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38325794

The microcirculation hemodynamics change and inflammatory response are the two main pathophysiological mechanisms of renal ischemia-reperfusion injury (IRI) induced acute kidney injury (AKI). The treatment of microcirculation hemodynamics and inflammatory response can effectively alleviate renal injury and correct renal function. Picroside II (P II) has a wide range of pharmacological effects. Still, there are few studies on protecting IRI-AKI, and whether P II can improve renal microcirculation perfusion is still being determined. This study aims to explore the protective effect of P II on IRI-AKI and evaluate its ability to enhance renal microcirculation perfusion. In this study, a bilateral renal IRI-AKI model in mice was established, and the changes in renal microcirculation and inflammatory response were quantitatively evaluated before and after P II intervention by contrast-enhanced ultrasound (CEUS). At the same time, serum and tissue markers were measured to assess the changes in renal function. The results showed that after P II intervention, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC), and the normalized intensity difference (NID) were all alleviated. In conclusion, P II can improve renal microcirculation perfusion changes caused by IRI-AKI, reduce inflammatory reactions during AKI, and enhance renal antioxidant stress capacity. P II may be a new and promising drug for treating IRI-AKI.


Acute Kidney Injury , Cinnamates , Iridoid Glucosides , Reperfusion Injury , Mice , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Kidney/pathology , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion , Ischemia/pathology
12.
Eur J Pharmacol ; 969: 176460, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38402931

Ropinirole used to treat Parkinson's disease highly targets the dopaminergic receptor D3 over the D2 receptor but although both are expressed in the kidneys the ropinirole potential to treat kidney injury provoked by ischemia/reperfusion (I/R) is undraped. We investigated whether ropinirole can alleviate renal I/R by studying its anti-inflammatory, antioxidant, and anti-pyroptotic effects targeting its aptitude to inhibit the High-mobility group box 1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NF-κB) cue and the canonical/non-canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome trajectories. Herein, bilateral I/R surgery was induced in animals to be either untreated or treated with ropinirole for three days after the insult. Ropinirole successfully improved the histopathological picture and renal function which was confirmed by reducing cystatin C and the standard parameters creatinine and blood urea nitrogen (BUN). Ropinirole achieved this through its anti-inflammatory capacity mediated by reducing the HMGB1/TLR4 axis and inactivating NF-κB, which are upstream regulators of the NLRP3 pathway. As a result, the injurious inflammasome markers (NLRP3, apoptosis-associated speck-like protein (ASC), active caspase-1) and their target cytokines interleukin-1 beta (IL-1ß) and IL-18 were decreased. Ropinirole also reduced the pyroptotic cell death markers caspase-11 and gasdermin-D. Furthermore, ropinirole by replenishing antioxidants and decreasing malondialdehyde helped to reduce oxidative stress in the kidneys. The docking findings confirmed that ropinirole highly binds to the dopaminergic D3 receptor more than to the D2 receptor. In conclusion, ropinirole has the potential to be a reno-therapeutic treatment against I/R insult by abating the inflammatory NLRP3 inflammasome signal, pyroptosis, and oxidative stress.


Acute Kidney Injury , HMGB1 Protein , Indoles , Reperfusion Injury , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Caspases , Antioxidants/pharmacology , Ischemia , Kidney/metabolism , Reperfusion , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
13.
Nephrology (Carlton) ; 29(4): 188-200, 2024 Apr.
Article En | MEDLINE | ID: mdl-38173056

AIM: In two recent studies, we observed that a 30-min renal vein clamping caused formation of interstitial haemorrhagic congestion in ischaemic and ischaemic/reperfused kidney along with the development of severer acute kidney injury (AKI) than renal artery or pedicle clamping. It was suggested that the transmission of high arterial pressure into renal microvessels during vein occlusion probably causes the occurrence of interstitial haemorrhagic congestion that augments AKI. The present investigation aimed to evaluate this suggestion by reducing renal perfusion pressure (RPP) during renal venous occlusion. METHODS: Anaesthetized male Sprague-Dawley rats were divided into three groups (n = 8), which underwent a 2-h reperfusion period following 30-min bilateral renal venous clamping along with reduced RPP (VIR-rRPP group) or without reduced RPP (VIR group) and an equivalent period after sham-operation (Sham group). RESULTS: The VIR-rRPP group compared with VIR group had lower levels of kidney malondialdehyde and tissue damages as epithelial injuries of proximal tubule and thick ascending limb, vascular congestion, intratubular cast and oedema, along with the less reductions in renal blood flow, creatinine clearance, Na+ -reabsorption, K+ and urea excretion, urine osmolality and free-water reabsorption. Importantly, the formation of intensive interstitial haemorrhagic congestion in the VIR group was not observed in the VIR-rRPP group. CONCLUSION: These results indicate that the transmission of high arterial pressure into renal microvessels during venous occlusion leads to rupturing of their walls and the formation of interstitial haemorrhagic congestion, which has an augmenting impact on ischaemia/reperfusion-induced renal structural damages and haemodynamic, excretory and urine-concentrating dysfunctions.


Acute Kidney Injury , Hypertension , Reperfusion Injury , Rats , Male , Animals , Arterial Pressure , Constriction , Rats, Sprague-Dawley , Kidney , Acute Kidney Injury/etiology , Reperfusion Injury/complications , Ischemia/complications , Reperfusion/adverse effects , Microvessels
14.
Cell Commun Signal ; 22(1): 33, 2024 01 12.
Article En | MEDLINE | ID: mdl-38217003

BACKGROUND: Spinal cord ischemia‒reperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemia‒reperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS: Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS: The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1ß-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS: H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.


Hydrogen Sulfide , Morpholines , Neuroprotective Agents , Organothiophosphorus Compounds , Reperfusion Injury , Rats , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 3/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Spinal Cord/metabolism , Spinal Cord/pathology , Apoptosis , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
15.
Neurocrit Care ; 40(1): 99-115, 2024 Feb.
Article En | MEDLINE | ID: mdl-37002474

BACKGROUND: Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS: In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS: For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION: Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.


Brain Injuries , Heart Arrest , Hypoxia-Ischemia, Brain , Reperfusion Injury , Humans , Child , Heart Arrest/complications , Homeostasis/physiology , Reperfusion Injury/complications , Cerebrovascular Circulation/physiology
16.
J Invest Dermatol ; 144(1): 142-151.e5, 2024 01.
Article En | MEDLINE | ID: mdl-37516309

Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.


Pressure Ulcer , Reperfusion Injury , Animals , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , Apoptosis , Keratinocytes/metabolism , Reperfusion Injury/complications , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Skin/metabolism
17.
Mol Neurobiol ; 61(2): 1175-1186, 2024 Feb.
Article En | MEDLINE | ID: mdl-37695472

Post-stroke acute inhibition of aquaporin 4 (AQP4) is known to exacerbate inflammation and apoptosis, yet the underlying mechanisms are not fully understood. The objective of this study was to investigate the specific mechanism of inflammation and apoptosis following cerebral ischemia-reperfusion (I/R) injury using the AQP4-specific inhibitor, N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride (TGN-020). Ischemic stroke was induced in mice using the middle cerebral artery occlusion (MCAO) model. The C57/BL6 mice were randomly divided into three groups as follows: sham operation, I/R 48 h, and TGN-020 + I/R 48 h treatment. All mice were subjected to a series of procedures. These procedures encompassed 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological scoring, fluorescence tracing, western blotting, immunofluorescence staining, and RNA sequencing (RNA-seq). The glymphatic function in the cortex surrounding cerebral infarction was determined using tracer, glial fibrillary acid protein (GFAP), AQP4 co-staining, and beta-amyloid precursor protein (APP) staining; differential genes were detected using RNA-seq. The influence of TGN-020 on the extracellular signal-regulated kinase 1/2 (ERK) 1/2 pathway was confirmed using the ERK1/2 pathway agonists Ro 67-7467. Additionally, we examined the expression of inflammation associated with microglia and astrocytes after TGN-020 and Ro 67-7467 treatment. Compared with I/R group, TGN-020 alleviated glymphatic dysfunction by inhibiting astrocyte proliferation and reducing tracer accumulation in the peri-infarct area. RNA-seq showed that the differentially expressed genes were mainly involved in the activation of astrocytes and microglia and in the ERK1/2 pathway. Western blot and immunofluorescence further verified the expression of associated inflammation. The inflammation and cell apoptosis induced by I/R are mitigated by TGN-020. This mitigation occurs through the improvement of glymphatic function and the inhibition of the ERK1/2 pathway.


Brain Ischemia , Niacinamide/analogs & derivatives , Reperfusion Injury , Thiadiazoles , Mice , Animals , MAP Kinase Signaling System , Signal Transduction/physiology , Apoptosis , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Inflammation/complications , Inflammation/drug therapy , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
18.
J Heart Lung Transplant ; 43(2): 241-250, 2024 Feb.
Article En | MEDLINE | ID: mdl-37730188

BACKGROUND: Pulmonary endarterectomy (PEA) is the guideline-recommended treatment for patients with chronic thromboembolic pulmonary hypertension (CTEPH). However, some patients develop severe cardiopulmonary compromise before surgery, intraoperatively, or early postoperatively. This may result from advanced CTEPH, reperfusion pulmonary edema, massive endobronchial bleeding, or right ventricular (RV) failure secondary to residual pulmonary hypertension. Conventional cardiorespiratory support is ineffective when these complications are severe. Since 2005, we used extracorporeal membrane oxygenation (ECMO) as a rescue therapy for this group. We review our experience with ECMO support in these patients. METHODS: This study was a retrospective analysis of patients who received perioperative ECMO for PEA from a single national center from August 2005 to July 2022. Data were prospectively collected. RESULTS: One hundred and ten patients (4.7%) had extreme cardiorespiratory compromise requiring perioperative ECMO. Nine were established on ECMO before PEA. Of those who received ECMO postoperatively, 39 were for refractory reperfusion lung injury, 20 for RV failure, 31 for endobronchial bleeding, and the remaining 11 were for "other" reasons, such as cardiopulmonary resuscitation following late tamponade and aspiration pneumonitis. Sixty-two (56.4%) were successfully weaned from ECMO. Fifty-seven patients left the hospital alive, giving a salvage rate of 51.8%. Distal disease (Jamieson Type III) and significant residual pulmonary hypertension were also predictors of mortality on ECMO support. Overall, 5- and 10-year survival in patients who were discharged alive following ECMO support was 73.9% (SE: 6.1%) and 58.2% (SE: 9.5%), respectively. CONCLUSIONS: Perioperative ECMO support has an appropriate role as rescue therapy for this group. Over 50% survived to hospital discharge. These patients had satisfactory longer-term survival.


Extracorporeal Membrane Oxygenation , Heart Failure , Hypertension, Pulmonary , Reperfusion Injury , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Hypertension, Pulmonary/surgery , Hypertension, Pulmonary/etiology , Retrospective Studies , Treatment Outcome , Hemorrhage/etiology , Heart Failure/therapy , Endarterectomy/adverse effects , Reperfusion Injury/complications , United Kingdom/epidemiology
19.
Mol Neurobiol ; 61(3): 1417-1432, 2024 Mar.
Article En | MEDLINE | ID: mdl-37721688

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.


Brain Injuries , Hypoxia-Ischemia, Brain , Reperfusion Injury , Rats , Animals , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/pathology , Rats, Sprague-Dawley , Brain/pathology , Brain Injuries/pathology , Hypoxia/pathology , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/pathology , Animals, Newborn
20.
Can J Cardiol ; 40(1): 1-14, 2024 01.
Article En | MEDLINE | ID: mdl-37906238

Myocardial infarction (MI) remains a leading cause of morbidity and mortality. In atherothrombotic MI (ST-elevation MI and type 1 non-ST-elevation MI), coronary artery occlusion leads to ischemia. Subsequent cardiomyocyte necrosis evolves over time as a wavefront within the territory at risk. The spectrum of ischemia and reperfusion injury is wide: it can be minimal in aborted MI or myocardial necrosis can be large and complicated by microvascular obstruction and reperfusion hemorrhage. Established risk scores and infarct classifications help with patient management but do not consider tissue injury characteristics. This document outlines the Canadian Cardiovascular Society classification of acute MI. It is an expert consensus formed on the basis of decades of data on atherothrombotic MI with reperfusion therapy. Four stages of progressively worsening myocardial tissue injury are identified: (1) aborted MI (no/minimal myocardial necrosis); (2) MI with significant cardiomyocyte necrosis, but without microvascular injury; (3) cardiomyocyte necrosis and microvascular dysfunction leading to microvascular obstruction (ie, "no-reflow"); and (4) cardiomyocyte and microvascular necrosis leading to reperfusion hemorrhage. Each stage reflects progression of tissue pathology of myocardial ischemia and reperfusion injury from the previous stage. Clinical studies have shown worse remodeling and increase in adverse clinical outcomes with progressive injury. Notably, microvascular injury is of particular importance, with the most severe form (hemorrhagic MI) leading to infarct expansion and risk of mechanical complications. This classification has the potential to stratify risk in MI patients and lay the groundwork for development of new, injury stage-specific and tissue pathology-based therapies for MI.


Myocardial Infarction , Reperfusion Injury , Humans , Canada/epidemiology , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Necrosis/complications , Reperfusion Injury/complications , Hemorrhage/etiology
...